Britek Foot wear

the first super shoe

Britek footwear laboratory testing

Doctor Amy Roberts

Whole Body Efficiency Results (VOUptake Tests)
Whole body efficiency measures the consumption and expiration of gases. To determine the improvement of Applicant’s shoe as compared to the standard shoe, graded and steady state exercise tests were performed to analyze the expired gases (determine VO2) with 3 or 12 lead electrocardiography during treadmill running on athletes. Specifically, VOmeasures Odelivered by the heart/cardiac output.
Test subject athletes reported for testing on two occasions. On the first occasion each subject wore the standard shoe and VO2max was determined by a graded exercise test on a treadmill. On the second occasion the standard shoe and Applicant’s shoe were compared using a 75-90% VO2max graded steady state intensity and absolute intensity protocol. The equipment used was a Sensor Medics Vmax 29 metabolic cart equipped with two calibration gas tanks, one laptop computer with software installed, one printer, one VGA monitor and 12/3 lead EKG machines. Additionally, sets of flow sensors, tubing, mouthpieces and headgears, as well as an ample supply of EKG patch electrodes, were used.
In response to the same running protocol, Applicant’s shoe demonstrated a reduced Oconsumption at the same relative (80%-90%) VO2max and absolute intensity in all male athletes tested. This finding was notable at intensities representing 80-90% VO2max and at speeds of 9.5, 10, 10.5 and 11 miles/hr. This finding is consistent with an improved whole body efficiency when running in Applicant’s shoe relative to the standard shoe at paces that are typical of those performed during racing and intense recreational training. The average improvement in whole body efficiency at the aforementioned intensities was 13%. However, at the higher absolute and relative intensities, the average improvement in whole body efficiency was 15%. Individual variability was present, as certain individuals demonstrated an average improvement of efficiency of 21% and 18%, respectively, at the same absolute intensity of 10, 10.5 and 11 miles/hr. This individual variation may be credited to initial differences in biomechanics, body mechanics or running style. Interestingly, the least improvement was measured in the ultradistance runners, whereas the greatest effect of the shoe was measured in shorter distance triathletes/duathletes. This finding is consistent with the idea that the ultradistance runners demonstrated improved mechanical or biomechanical efficiency initially when compared with the shorter distance cross-trained athlete. The overall findings were that every subject received whole body efficiency improvements using Applicant’s shoe. Results varied between subjects due to biomechanics, body mechanics and running style. In conclusion, Applicant’s shoe leads to improved running efficiency as demonstrated by the physiological data of all male athletes tested.
The preliminary data to compare whole body efficiency during like protocol treadmill running using Applicant’s shoe and the standard shoe in a female elite athlete is consistent with data previously collected on men. Although the magnitude of the effect was less, the measured VOwas consistently lower at all measured workloads and the discrepancy between males and one female runner may be credited to different running mechanics (specifically, forefoot running in the female). To this effect, when mechanics were made more similar by an imposed grade during very fast treadmill running, the whole body efficiency was improved. It is likely that the improved whole body efficiency measured in an elite female athlete when wearing the experimental is similar to that measured previously in men.
As seen in male runners, in response to the same running protocol, Applicant’s shoe demonstrated a reduced Oconsumption at the same relative (80-90%) VO2max and absolute intensity in an elite female runner. This finding was notable at intensities representing (80-95%) VO2max and at speeds of 8.5, 9, 9.5 and 10 mph. This finding is consistent with an improved whole body efficiency when running in the experimental shoe relative to the standard shoe at paces that are typical of those performed during racing and intense recreational training. Although the magnitude of the improvement measured at different intensities was smaller than that measured in men, it is still a notable (around 3%) difference. To this difference, it was noted that the elite female athlete landed primarily on her forefoot. Hence, the total effectiveness of the shoe may not have been fully measured due to the construction of the shoe which places the major mechanism in the heel of the shoe. Of interest was the VOmeasurement during exercise on the treadmill in response to a change in grade. Mechanically for a forefoot runner this grade change at a 10.5 mph speed may force the athlete to spring off from her heel and thereby explain the improvement in whole body efficiency measured. Specifically, we measured a 5-7% decrease in whole body efficiency in the light of an increase in workload. Therefore, this improvement in whole body efficiency in response to grade is greatly underestimated. On the other hand, this preliminary data offers insight as to more areas of investigation for the possibility of improved whole body efficiency due to the mechanics of the experimental shoe.

2. Whole Body Kinematic Test
Applicant has also performed a whole-body kinematic test to show how the whole body receives benefits from Applicant’s invention in particular, by providing more proper angles at the ankle, knee and hip and less vertical body movements.
A running stride analysis was performed on the two subjects to determine running temporal and kinematic parameters across varying shoes. The shoes tested were as follows: a regular pair of running shoes, and two pairs of running shoes designed to return energy to the runner (“Applicant’s shoe”). The concept behind Applicant’s shoe is that it absorbs the energy of impact with the ground and is able to transfer that energy back to the runner in the latter phases of stance, thus improving running economy. It was hypothesized that there would be observable changes in the running kinematics, notably, decreased stance time combined with an increased swing time (time in the air) as well as increased leg extension in late stance as the shoe returned energy.
Data was collected on one male (Subject 1) and one female (Subject 2). Eighteen joint markers were placed bilaterally on the following landmarks: the lateral aspect of the head of the 5th metatarsal, the lateral malleolus, lateral approximation of the axis of rotation of the knee, lateral approximation of the axis of rotation of the hip, iliac crests, lateral approximation of the shoulder axis of rotation, lateral elbow, wrist, forehead and chin. 
Subject 1 was filmed with 3 video cameras at a frame rate of 30 frames per second while running on a treadmill at 10.0 mph (4.47 m/s). The trial order was: regular shoes, energy return shoes, lightweight energy return shoes. Subject 2 was filmed while running at 8.6 mph (3.84 m/s) and 10.0 mph (4.47 m/s). The video data was analyzed using the Ariel Performance Analysis System (APAS) to generate a three-dimensional image of the subject for each of the three trials. Trial information is provided below:

 

 
Subject Trial Speed (m/s) Shoe
 
1 1 4.47 Regular
1 2 4.47 Energy Return
1 3 4.47 Light Energy Return
2 1 3.84 Regular
2 2 4.47 Regular
2 3 3.84 Light Energy Return
2 4 4.47 Light Energy Return
 
The temporal measure of the running stride were determined to be as follows:
TABLE 1
 
Temporal Stride Measurements
    Trial Stance Swing Stride
Subject Speed (m/s) Number Time(s) Time(s) Rate(s)
 
1 4.47 1 0.207 0.420 0.627
1 4.47 2 0.207 0.426 0.633
1 4.47 3 0.207 0.413 0.620
2 3.84 1 0.217 0.450 0.667
2 4.47 2 0.206 0.440 0.647
2 3.84 3 0.206 0.440 0.647
2 4.47 4 0.203 0.437 0.640
 
The general sagittal plane-kinematic variables of stride length, vertical displacement and R foot travel are shown below. Stride length was determined from the stride rate determined above and the treadmill velocity, which was assumed to remain constant. The vertical displacement is the measure of the sagittal plane travel of the forehead marker. The travel of the right foot is the measure of the foot’s sagittal displacement through one complete stance and swing cycle.
TABLE 2
 
General Kinematic Measurements
      Stride Vertical R Foot travel
  Speed Trial Length Displacement during one
Subject (m/s) Number (m) (cm) running stride (m)
 
1 4.47 1 2.80 6.0 1.95
1 4.47 2 2.83 5.8 2.01
1 4.47 3 2.77 5.0 1.94
2 3.84 1 2.56 6.9 1.91
2 4.47 2 2.89 5.8 2.00
2 3.84 3 2.48 6.4 1.86
2 4.47 4 2.86 5.8 2.01
 
The lower extremity sagittal plane kinematics were determined for the right side. This included the hip, knee and ankle angles. Hip angle was calculated as the angle between the thigh and the pelvis and an increasing angle equals hip extension. Knee angle was calculated as the angle between the thigh and the shank segments and an increasing angle equals extension. Ankle angle was calculated as the angle between the shank and the foot and an increasing angle equals plantarflexion.
The maximum hip extension was observed just prior to toe off and maximum hip flexion was observed just prior to heel strike.
TABLE 3
 
Hip Kinematics
          Range of
  Speed Trial Maximum hip Maximum hip motion of the
Subject (m/s) Number extension (degrees) flexion (degrees) hip (degrees)
 
1 4.47 1 171.2 130.4 40.8
1 4.47 2 166.8 128.2 38.6
1 4.47 3 171.2 131.0 40.2
2 3.84 1 157.2 108.5 48.7
2 4.47 2 151.0 96.2 54.8
2 3.84 3 157.0 113.6 43.4
2 4.47 4 158.2 108.9 49.3
 
Knee angles indicated a yielding phase of knee flexion during the beginning of stance followed by knee extension through toe-off. During swing the knee rapidly flexed and then extended prior to heel strike. Range of motion of the yielding phase and the extension phase of stance are shown below, as is the maximum knee flexion observed during swing.
TABLE 4
 
Knee Kinematics
      Knee Flexion Knee Extension Maximum knee
  Speed Trial during stance during stance flexion during
Subject (m/s) Number (degrees) (degrees) swing (degrees)
 
1 4.47 1 14.7 16.1 75.5
1 4.47 2 14.2 12.2 81.6
1 4.47 3 19.7 27.2 78.2
2 3.84 1 13.4 27.2 76.8
2 4.47 2 22.1 28.7 69.4
2 3.84 3 18.2 26.1 78.0
2 4.47 4 18.5 26.7 75.0
 
Ankle angle ranges of motion are shown in Table 5. The ankle plantarflexed during the initial phase of stance. Ankle dorsiflexion was observed through mid-stance and then plantarflexion from late stance through the initial phase of swing.
TABLE 5
 
Ankle Kinematics
      Ankle Range of Motion
Subject Speed Trial Number (degrees)
 
1 4.47 1 29
1 4.47 2 27
1 4.47 3 42
2 3.84 1 43
2 4.47 2 39
2 3.84 3 53
2 4.47 4 45
 
This study attempted to quantify kinematic and temporal changes in running mechanics at two speeds with two subjects across different types of footwear. General observations from this study can be made.
There were few changes in the temporal measures of stride rate, stance and swing times. Subject 1 had a slightly shorter stride rate in the third trial, meaning turnover had increased. The lack of differences may in part be due to the frame rate used in this study. The frame rate of 30 frames per second is inadequate to determine the precise moments of foot strike and toe off. This study did not use a mechanical foot switch to determine heel strike more accurately.

Subject 1 had a lower vertical displacement during trial 3 compared to trials

 

 1 and 2. This could be an indication of better running economy. A lower vertical displacement may indicate less energy being expended to raise the body’s center of mass, which could result in lower physiological costs.

There was an interesting difference in the kinematic parameters of the knee and ankle when comparing the trials

 

 1 and 2 with trial 3 of Subject

 

 1. There was a relatively higher degree of knee flexion during the yield phase of stance followed by a greater degree of knee extension. This could indicate that energy is being stored during the yield phase of trial 3 and returned to the lower extremity during the push off phase. The energy transfer might be observed as a greater knee extension during push off. The ankle kinematics followed a similar pattern. The range of motion of the ankle was greater in trial 3 than in the other two trials. These differences were not noted in Subject 2 across the same speeds.

It is interesting to note that the “original” energy return shoe showed few differences from the regular running shoe of 

trial.

 1. The patterns described above should be examined with a more complete study to determine if the shoe in trial 3 is significantly different than the other shoes.

3. F-Scan Tests
Two F-Scan Tests were performed to show how Applicant’s shoe tends to spread out high pressure areas of the feet from the ground up. Applicant’s shoe was tested against Mizuno Wave Rider Technology, which claims to have 22% more shock absorbency than any current midsole technology.
Applicant’s invention had a profound ability to spread out high-pressure areas of the foot from the ground up. A close comparison can be drawn to the effect an orthotic gives to the foot. Orthotics correct negative foot movements from the ground up to stabilize the foot in a neutral position instead of over-pronation or over-supination. In the forefoot, or ball of the foot, each metatarsal head gets a more equal share of the load placed upon it. As the biomechanics place heavy loads on certain metatarsals, the load will get shared by the others. The F-scan tests particularly demonstrated the equal loading of the metatarsals, significantly less amount of heel pressure when wearing Applicant’s shoe.
4. Shock Absorption Tests
Shock absorption tests were performed on Applicant’s shoe and the standard shoe. The shock absorption test uses a heel impact test machine constructed by ARTECH, featuring a one-inch diameter steel rod guided by a pair of linear ball bearings. The rod weighs eight pounds and a three pound weight is clamped to the rod to give a total weight of eleven pounds. A five hundred pound load cell placed under the specimen measures force produced during impact. Force and displacement are recorded by a computer using a 12-bit data acquisition system, for 256 milliseconds at millisecond intervals.
The ARTECH system uses a load cell under the specimen rather than an accelerometer on the drop shaft. G-force is calculated by subtracting the weight of the drop shaft and the spring force from the peak load force, which may offer a more direct measure of comfort.
The computer software calculates peak load and g-force as indicated above, and calculates energy return by comparing the height of the first rebound to the drop height at full compression.
The test data is the average of 10 drops for each style of footwear. In general, lower loads and shock (g value) suggest more comfort to the wearer. High-energy returns, while not as critical for comfort, may provide an appealing “spring” in the step, may reduce energy expenditure, and may indicate a resistance to packing down of the cushion material.
To provide a general comparison to the attached test results, a very comfortable athletic shoe produced a g value of 5.4, which included the rubber sole, EVA midsole and sock liner. A very uncomfortable athletic shoe had a g value of 8.7 and a men’s loafer 16.2 fees.
The test procedure was slightly modified while testing these shoes. The submitted shoes were tested with the normal eleven pond weight and then with an added weight to total twenty-two pound weight. The shoes were also tested on a flat surface and at a 30° angle.
The test results are shown in the table below.
 
  Sample ID
Property Assessed Applicant’s Shoe Mizuno Shoe   30° angle 30° angle
 
Heel Drop 11 lb. 22 lb. 11 lb. 22 lb. 11 lb. 22 lb. 11 lb. 22 lb.
  Load Load Load Load Load Load Load Load
Shock Absorption 1.12 1.09 1.13 1.10 1.10 1.00 1.11 1.12
Avg. (R&L shoes)                
“g” Value                
Energy Returned % 83.3 86.2 82.9 79.0 84.0 70.75 83.4 88.0
Drop Height .7683 0.6111 0.8314 0.8107 .5808 0.8438 0.5407 0.7675
 
5. Physics Testing
Three general phenomenon are observed with Applicant’s invention:
VERTICAL ENERGY RETURN—the shoe vertically returns or rebounds from where the user started.
GUIDANCE—the shoe actually moves vertically without the side-to-side movement.
CUSHIONING UPON IMPACT—the shoe continues to move for a longer duration than conventional athletic footwear, creating greater shock absorption.
When the shoe strikes the ground while running, the user decelerates and loses energy. Then, energy is needed to lift the foot and leg up against gravity to start the next stride. Because Applicant’s invention returns a quantifiable amount of energy to assist in lifting the foot, heel and lower leg, less work (energy) is needed to run, and less oxygen is required to perform. This energy return can be defined as an “unweighing” of an individual.
A device was utilized that could hold any brand of athletic shoe, impacting the wall vertically and measuring recorded data from the length of rebound off the wall, the distance each shoe returned from the wall (measurements taken at 12″ and 18″) and weighted (117 lbs) giving us the energy return data used in the testing. Shoes used: Nike Air Tailwind, Nike Air Triax, Asics Gel Kayano, Asics Gel 2030, Brooks Beast, Saucony Grid Hurricane and Applicant’s shoe. Applicant’s shoe returned up to 22% more energy than current athletic shoe offerings.

Britek Footwear…World’s first full suspension shoe. Laboratory tests, International Utility Footwear Patents.

Run the Future: Invest in the Britek Super Shoe

The global running shoe market is projected to reach $74.2 billion by 2031. In a market obsessed with “super shoes,” the Britek system isn’t just an incremental improvement—it’s a new paradigm in human performance technology.
We are seeking strategic investment to scale the only shoe built on the physics of energy return, not just foam compression.
What It Means to the Runner 🏃‍♀️💨

For runners, the 

Britek Super Shoe

 provides a tangible, measurable edge that elite competitors and everyday athletes alike are chasing.

  • Run Faster, Jump Higher: The patented technology is designed to deliver improved running economy, meaning less energy expended for faster speeds.
  • Less Fatigue, Faster Recovery: By absorbing and returning energy, the shoe reduces muscle damage and inflammation, helping runners feel “fresher” in the later miles of a marathon and recover quicker after hard workouts.
  • Confidence & Control: The adaptive tech provides enhanced stability and proprioception, giving runners the confidence to push their limits on any terrain.
The Britek Tech Advantage (IP Protected) 🧪🛡️
Our technology, protected by multiple U.S. patents, moves beyond the current carbon-plate standard by creating an active energy loop:
  • 🔄 Kinetic Energy Harvesting: Internal elastomers and proprietary material science capture energy from ground impact and return it as forward propulsion, acting like a 360-degree slingshot.
  • 🧠 Biomechanical Optimization: Built on advanced computational modeling of human performance, our design optimizes stride length and minimizes wasted vertical oscillation (bounce).
  • 👟 Material Science Edge: We utilize specialized Graphene-enhanced compounds and highly elastic materials to ensure energy is returned to the runner, rather than lost as heat.
Take the Next Step
This is more than an athletic shoe; it’s a proven performance platform validated by experts. We have a clear path to commercialization and global market capture in the high-growth super shoe sector.
Join us in revolutionizing human movement.
[VIEW THE INVESTMENT DECK] | [SCHEDULE A PARTNERSHIP BRIEFING]